tencent cloud

文档反馈

Tensorflow 简介

最后更新时间:2021-07-01 15:23:23

    TensorFlow 是一个端到端开源机器学习平台。它拥有一个全面而灵活的生态系统,其中包含各种工具、库和社区资源,可助力研究人员推动先进机器学习技术的发展,并使开发者能够轻松地构建和部署由机器学习提供支持的应用。

    • 轻松地构建模型
      在即刻执行环境中使用 Keras 等直观的高阶 API 轻松地构建和训练机器学习模型,此环境使我们能够快速迭代模型并轻松地调试模型。
    • 随时随地进行可靠的机器学习生产
      无论您使用哪种语言,都可以在云端、本地、浏览器中或设备上轻松地训练和部署模型。
    • 强大的研究实验
      一个简单而灵活的架构,可以更快地将新想法从概念转化为代码,然后创建出先进的模型,并最终对外发布。

    Tensorflow 架构

    • 客户端(Client)
      将计算过程定义为数据流图。使用_Session_初始化数据流图的执行。
    • 分布式主控端(Master)
      修剪图中的某些特殊子图,即Session.run()中所定义的参数。将子图划分为在不同进程和设备中运行的多个部分。将图分发给不同的工作进程。由工作进程初始化子图的计算。
    • 工作进程(Worker service)(每个任务的)
      使用内核实现调度图操作并在合适的硬件(CPU、GPU 等)执行。向其他工作进程发送或从其接收操作的结果。
    • 内核实现
      执行一个独立的图操作计算。

    EMR 支持 Tensorflow

    • Tensorflow 版本:v1.14.0
    • 目前 Tensorflow 只支持运行在 CPU 机型,暂不支持 GPU 机型
    • 支持 tensorflow on spark 做分布式训练

    Tensorflow 开发示例

    首先需要安装 Tensorflow,切换到 root 用户下,密码为创建 EMR 集群时设置的密码,先安装 python-pip 工具再安装依赖包:

    [hadoop@172 hbase]$ su
    Password: ********
    [root@172 hbase]# yum install python-pip
    [root@172 hbase]# pip install Tensorflow
    

    编写代码:test.py

    import tensorflow as tf
    hello = tf.constant('Hello, TensorFlow!')
    sess = tf.Session()
    print sess.run(hello)
    a = tf.constant(10)
    b = tf.constant(111)
    print sess.run(a+b)
    exit()
    

    执行如下命令:

    python test.py
    

    更多用法请参考 Tensorflow 官网。

    联系我们

    联系我们,为您的业务提供专属服务。

    技术支持

    如果你想寻求进一步的帮助,通过工单与我们进行联络。我们提供7x24的工单服务。

    7x24 电话支持