tencent cloud

文档反馈

Confluent Go SDK

最后更新时间:2024-07-04 16:01:00

    背景

    TDMQ CKafka 是一个分布式流处理平台,用于构建实时数据管道和流式应用程序。它具备高吞吐量、低延迟、可伸缩性和容错性等特性。
    Sarama:Shopify 开发的一个 Kafka 库,提供了生产者、消费者、分区消费者等功能。该库的性能较好,社区支持也较为活跃。
    Confluent-Kafka-Go:由 Confluent 开发的 Kafka 库,提供了高级 API,易于使用。该库基于 librdkafka C 库,性能非常优秀,但安装和使用略显复杂。
    本文着重介绍上述 Confluent Go 客户端的关键参数、实践教程以及常见问题。

    生产者实践

    版本选择

    在使用 Confluent Go SDK 时,可以通过配置参数 "bootstrap.servers" 来指定 Kafka 集群的地址,而 Broker 的版本则可以通过"api.version.request"参数来设置,这样 Confluent Go SDK 会在启动时自动检测 Broker 的版本。
    config := &kafka.ConfigMap{
    "bootstrap.servers": "localhost",
    "api.version.request": true,
    }

    生产者参数与调优

    生产者参数

    Confluent Go 是基于 librdkafka 开发的,在使用 Confluent Go 客户端写入 Kafka 的时候,需要配置的参数会透传 librdkafka,主要涉及如下关键参数,相关的参数和默认值如下:
    
    package main
    
    import (
    "fmt"
    "github.com/confluentinc/confluent-kafka-go/kafka"
    )
    
    func main() {
    config := &kafka.ConfigMap{
    "bootstrap.servers": "localhost:9092",
    "acks": -1, //ack方式,默认值为-1
    "client.id": "rdkafka", //客户端ID
    "compression.type": "none", //指定压缩方式
    "compression.level": -1, //压缩等级
    "batch.num.messages": 10000, //默认一个批次最多聚合10000条消息,构成MessageSet整批发送,提高性能
    "batch.size": 1000000, //构成MessageSet整批大小限制,默认限制最多不超过1000000字节
    "queue.buffering.max.ms": 5, //在构造消息批次(MessageSets)传输到Broker之前,默认延迟5ms攒批消息
    "queue.buffering.max.messages": 100000, //Producer攒批发送中,总的消息数不能超过100000
    "queue.buffering.max.kbytes": 1048576, //Producer攒批发送中,MessageSets
    "message.send.max.retries": 2147483647, //重试次数,默认2147483647
    "retry.backoff.ms": 100, //重试间隔时间,默认100ms
    "socket.timeout.ms": 60000, //会话超时时间,默认60s
    }
    
    producer, err := kafka.NewProducer(config)
    if err != nil {
    panic(fmt.Sprintf("Failed to create producer: %s", err))
    }
    
    // 使用producer发送消息等操作...
    
    // 关闭producer
    producer.Close()
    }

    参数说明调优

    关于 acks 参数优化
    acks 参数用于控制生产者发送消息时的确认机制。该参数的默认值为-1,表示消息发送给 Leader Broker 后,Leader 确认以及相应的 Follower 消息都写入完成后才返回。acks 参数还有以下可选值:0,1,-1。在跨可用区场景,以及副本数较多的 Topic,acks 参数的取值会影响消息的可靠性和吞吐量。
    在一些在线业务消息的场景下,吞吐量要求不大,可以将 acks 参数设置为-1,确保消息被所有副本接收和确认后才返回,从而提高消息的可靠性。
    在日志采集等大数据或者离线计算的场景下,要求高吞吐(即每秒写入 Kafka 的数据量)的情况下,可以将 acks 设置为1,提高吞吐。
    关于 buffering 参数优化(缓存)
    默认情况下,传输同等数据量的情况下,多次请求和一次请求的网络传输,一次请求传输能有效减少相关计算和网络资源,提高整体写入的吞吐量。
    因此,可以通过这个参数设置优化客户端发送消息的吞吐能力。对于 Confluent kafka Go,默认提供5ms的攒批时间积攒消息。如果消息较小,可以适当增加queue.buffering.max.ms的时间。
    关于压缩参数优化
    Confluent Go 支持如下压缩参数:none, gzip, snappy, lz4, zstd。
    在 Confluent Kafka Go 客户端中,支持以下几种压缩算法:
    none:不使用压缩算法。
    gzip:使用 GZIP 压缩算法。
    snappy:使用 Snappy 压缩算法。
    lz4:使用 LZ4 压缩算法。
    zstd:使用 ZSTD 压缩算法。
    要在 Producer 客户端中使用压缩算法,需要在创建生产者时设置 compression.type 参数。例如,要使用LZ4压缩算法,可以将 compression.type 设置为 lz4,虽然压缩算法的 CPU 压缩,和 CPU 解压缩,发生客户端,是一种用计算换带宽的优化方式,但是由于 Broker 针对压缩消息存在校验行为会付出额外的计算成本,尤其是 Gzip 压缩,服务端的压缩计算成本会比较大,在某种程度上可能会出现得不偿失的情况,反而因为计算的增加导致 Broker 消息处理能力偏低,导致带宽吞吐更低。这种情况建议可以使用如下方式进行使用:
    1. 在 Producer 端对消息数据独立压缩,生成压缩包数据:messageCompression,同时在消息的 key 存储压缩方式:
    {"Compression","CompressionLZ4"}
    2. 在 Producer 端将 messageCompression 当成正常消息发送。
    3. 在 Consumer 端读取消息 key,获取使用的压缩方式,独立进行解压缩。

    创建生产者实例

    如果应用程序需要更高的吞吐量,则可以使用异步生产者,以提高消息的发送速度。同时,可以使用批量发送消息的方式,以减少网络开销和 IO 消耗。如果应用程序需要更高的可靠性,则可以使用同步生产者,以确保消息发送成功。同时,可以使用 ACK 确认机制和事务机制,以确保消息的可靠性和一致性。具体的参数调优参考生产者参数与调优。
    
    package main
    
    import (
    "fmt"
    "github.com/confluentinc/confluent-kafka-go/kafka"
    )
    
    func main() {
    // 配置Kafka Producer
    p, err := kafka.NewProducer(&kafka.ConfigMap{
    "bootstrap.servers": "localhost:9092",
    "acks": "1",
    "compression.type": "none",
    "batch.num.messages": "1000",
    })
    if err != nil {
    fmt.Printf("Failed to create producer: %s\\n", err)
    return
    }
    
    // 发送消息
    for i := 0; i < 10; i++ {
    topic := "test-topic"
    value := fmt.Sprintf("hello world %d", i)
    message := &kafka.Message{
    TopicPartition: kafka.TopicPartition{Topic: &topic, Partition: kafka.PartitionAny},
    Value: []byte(value),
    }
    p.Produce(message, nil)
    }
    
    // 关闭Kafka Producer
    p.Flush(15 * 1000)
    p.Close()
    }

    消费者实践

    消费者参数与调优

    消费者参数

    
    package main
    
    import (
    "fmt"
    "github.com/confluentinc/confluent-kafka-go/kafka"
    )
    
    func main() {
    // 配置Kafka Consumer
    c, err := kafka.NewConsumer(&kafka.ConfigMap{
    "bootstrap.servers": "localhost:9092",
    "group.id": "test-group",
    "auto.offset.reset":"earliest",
    "fetch.min.bytes":1, //最小拉取字节数
    "fetch.max.bytes":52428800,//最大拉取字节数
    "fetch.wait.max.ms":"500", //如果没有最新消费消息默认等待500ms
    "enable.auto.commit":true, //是否支持自动提交位点,默认true
    "auto.commit.interval.ms":5000,//自动提交位点间隔,默认5s
    "max.poll.interval.ms": 300000,//Consumer 在两次 poll 操作之间的最大延迟。默认5分钟
    "session.timeout.ms": 45000,//session时间,默认45s
    "heartbeat.interval.ms": 3000,//心跳时间,默认3s
    })
    if err != nil {
    fmt.Printf("Failed to create consumer: %s\\n", err)
    return
    }
    
    // 订阅主题
    c.SubscribeTopics([]string{"test-topic"}, nil)
    
    // 手动提交位点
    for {
    ev := c.Poll(100)
    if ev == nil {
    continue
    }
    
    switch e := ev.(type) {
    case *kafka.Message:
    fmt.Printf("Received message: %s\\n", string(e.Value))
    c.CommitMessage(e)
    case kafka.Error:
    fmt.Printf("Error: %v\\n", e)
    }
    }
    
    // 关闭Kafka Consumer
    c.Close()
    }

    参数说明与调优

    1. max.poll.interval.ms 是 Kafka Consumer 的一个配置参数,它用于指定 Consumer 在两次 poll 操作之间的最大延迟。这个参数的主要作用是控制 Consumer 的 liveness,也就是判断 Consumer 是否还活着。如果 Consumer 在 max.poll.interval.ms 指定的时间内没有进行 poll 操作,那么 Kafka 认为这个 Consumer 已经挂掉,会触发 Consumer 的 rebalance 操作。这个参数的设置需要根据实际的消费速度来调整。如果设置得太小,可能会导致 Consumer 频繁地触发 rebalance 操作,增加了 Kafka 的负担;如果设置得太大,可能会导致 Consumer 在出现问题时不能及时被 Kafka 检测到,从而影响了消息的消费。
    2. 一般消费主要是 rebalance 时间频繁和消费线程阻塞问题,参考以下说明参数优化:
    2.1 session.timeout.ms:v0.10.2之前的版本可适当提高该参数值,需要大于消费一批数据的时间,但不要超过30s,建议设置为25s;而v0.10.2及其之后的版本,保持默认值10s即可。
    2.2 heartbeat.interval.ms:默认3s,设置该值 需要小于session.timeout.ms/3。
    2.3 max.poll.interval.m:默认5分钟,如果分区数和消费者较多,建议适当调大该值。该值要大于<max.poll.records> / (<单个线程每秒消费的条数> * <消费线程的个数>)的值。
    注意:
    如果消息处理是同步处理,即拉取消息、处理、再拉取下一个消息,需要做如下改造:
    根据需求调大 MaxProcessingTime 时间。
    针对处理时间大于 MaxProcessingTime 请求处理时间进行监控,采样打印超时时间。
    3. 针对自动提交位点请求,建议 auto.commit.interval.ms 时间不要低于1000ms,因为频率过高的位点请求会导致 Broker CPU 很高,影响其他正常服务的读写。

    创建消费者实例

    Confluent Go 提供订阅的模型创建消费者,其中在提交位点方面,提供手动提交位点和自动提交位点两种方式。

    自动提交位点

    自动提交位点:消费者在拉取消息后会自动提交位点,无需手动操作。这种方式的优点是简单易用,但是可能会导致消息重复消费或丢失。
    
    package main
    
    import (
    "fmt"
    "github.com/confluentinc/confluent-kafka-go/kafka"
    )
    
    func main() {
    // 配置Kafka Consumer
    c, err := kafka.NewConsumer(&kafka.ConfigMap{
    "bootstrap.servers": "localhost:9092",
    "group.id": "test-group",
    "auto.offset.reset": "earliest",
    "enable.auto.commit": true, //是否启用自动提交位点。设置为true,表示启用自动提交位点。
    "auto.commit.interval.ms": 5000, //自动提交位点的间隔时间。设置为5000毫秒(即5秒),表示每5秒自动提交一次位点。
    "max.poll.interval.ms": 300000,//Consumer在一次poll操作中最长的等待时间。设置为300000毫秒(即5分钟),表示Consumer在一次poll操作中最多等待5分钟
    "session.timeout.ms": 10000,//指定Consumer与broker之间的会话超时时间,设置10秒
    "heartbeat.interval.ms": 3000, //指定Consumer发送心跳消息的间隔时间。设置为3000毫秒(即3秒)
    })
    if err != nil {
    fmt.Printf("Failed to create consumer: %s\\n", err)
    return
    }
    
    // 订阅主题
    c.SubscribeTopics([]string{"test-topic"}, nil)
    
    // 自动提交位点
    for {
    ev := c.Poll(100)
    if ev == nil {
    continue
    }
    
    switch e := ev.(type) {
    case *kafka.Message:
    fmt.Printf("Received message: %s\\n", string(e.Value))
    case kafka.Error:
    fmt.Printf("Error: %v\\n", e)
    }
    }
    
    // 关闭Kafka Consumer
    c.Close()

    手动提交位点

    手动提交位点:消费者在处理完消息后需要手动提交位点。这种方式的优点是可以精确控制位点的提交,避免消息重复消费或丢失。但是需要注意,手动提交位点如果太频繁会导致 Broker CPU 很高,影响性能,随着消息量增加,CPU 消费会很高,影响正常 Broker 的其他功能,因此建议间隔一定消息提交位点。
    
    package main
    
    import (
    "fmt"
    "github.com/confluentinc/confluent-kafka-go/kafka"
    )
    
    func main() {
    // 配置Kafka Consumer
    c, err := kafka.NewConsumer(&kafka.ConfigMap{
    "bootstrap.servers": "localhost:9092",
    "group.id": "test-group",
    "auto.offset.reset": "earliest",
    "enable.auto.commit": false,
    "max.poll.interval.ms": 300000,
    "session.timeout.ms": 10000,
    "heartbeat.interval.ms": 3000,
    })
    if err != nil {
    fmt.Printf("Failed to create consumer: %s\\n", err)
    return
    }
    
    // 订阅主题
    c.SubscribeTopics([]string{"test-topic"}, nil)
    
    // 手动提交位点
    for {
    ev := c.Poll(100)
    if ev == nil {
    continue
    }
    
    switch e := ev.(type) {
    case *kafka.Message:
    fmt.Printf("Received message: %s\\n", string(e.Value))
    c.CommitMessage(e)
    case kafka.Error:
    fmt.Printf("Error: %v\\n", e)
    }
    }
    
    // 关闭Kafka Consumer
    c.Close()
    
    
    联系我们

    联系我们,为您的业务提供专属服务。

    技术支持

    如果你想寻求进一步的帮助,通过工单与我们进行联络。我们提供7x24的工单服务。

    7x24 电话支持