tencent cloud

피드백

Connecting Schema Registry to CKafka

마지막 업데이트 시간:2024-07-19 14:25:46
    We can serialize/deserialize classes by using Avro APIs or the Twitter Bijection class library, but the disadvantage of the two methods is that the Kafka record size will multiply as each record must be embedded with a schema. However, the schema is required for reading the records.
    CKafka makes it possible for data to share one schema by registering the content of the schema in Confluent Schema Registry. Kafka producers and consumers can implement serialization/deserialization by identifying the schema content in Confluent Schema Registry.
    

    Prerequisites

    You have downloaded JDK 8.
    You have downloaded Confluent OSS 4.1.1.
    You have created an instance as instructed in Creating Instance.

    Directions

    Step 1. Obtain the instance access address and enable automatic topic creation

    1. Log in to the CKafka console.
    2. Select Instance List on the left sidebar and click the ID of the target instance to enter its basic information page.
    3. On the instance's basic information page, get the instance access address in the Access Mode module.
    
    4. Enable automatic topic creation in the Auto-Create Topic module.
    Note:
    Automatic topic creation must be enabled as a topic named schemas will be automatically created when OSS is started.

    Step 2. Prepare Confluent configurations

    1. Modify the server address and other information in the OSS configuration file. The configuration information of the PLAINTEXT access method is as follows:
    kafkastore.bootstrap.servers=PLAINTEXT://xxxx
    kafkastore.topic=schemas
    debug=true
    The configuration information of the SASL_PLAINTEXT access method is as follows:
    kafkastore.bootstrap.servers=SASL_PLAINTEXT://ckafka-xxxx.ap-xxx.ckafka.tencentcloudmq.com:50004 kafkastore.security.protocol=SASL_PLAINTEXT kafkastore.sasl.mechanism=PLAIN kafkastore.sasl.jaas.config=org.apache.kafka.common.security.plain.PlainLoginModule required username='ckafka-xxxx#xxxx' password='xxxx';
    kafkastore.topic=schemas
    debug=true
    Note:
    bootstrap.servers: Access the network and copy from the network column of the Access Method section on the instance details page in the CKafka Console.
    
    2. Run the following command to start Schema Registry.
    bin/schema-registry-start etc/schema-registry/schema-registry.properties
    The execution result is as follows:
    

    Step 3. Receive/Send messages

    Below is the content of the schema file:
    {
    "type": "record",
    "name": "User",
    "fields": [
    {"name": "id", "type": "int"},
    {"name": "name", "type": "string"},
    {"name": "age", "type": "int"}
    ]
    }
    1. Register the schema in the topic named test.
    The script below is an example of registering a schema by calling an API with the curl command in the environment deployed in Schema Registry.
    curl -X POST -H "Content-Type: application/vnd.schemaregistry.v1+json" \\
    --data '{"schema": "{\\"type\\": \\"record\\", \\"name\\": \\"User\\", \\"fields\\": [{\\"name\\": \\"id\\", \\"type\\": \\"int\\"}, {\\"name\\": \\"name\\", \\"type\\": \\"string\\"}, {\\"name\\": \\"age\\", \\"type\\": \\"int\\"}]}"}' \\
    http://127.0.0.1:8081/subjects/test/versions
    2. The Kafka producer sends messages.
    package schemaTest;
    import java.util.Properties;
    import java.util.Random;
    import org.apache.avro.Schema;
    import org.apache.avro.generic.GenericData;
    import org.apache.avro.generic.GenericRecord;
    import org.apache.kafka.clients.producer.KafkaProducer;
    import org.apache.kafka.clients.producer.Producer;
    import org.apache.kafka.clients.producer.ProducerRecord;
    public class SchemaProduce {
    public static final String USER_SCHEMA = "{\\"type\\": \\"record\\", \\"name\\": \\"User\\", " +
    "\\"fields\\": [{\\"name\\": \\"id\\", \\"type\\": \\"int\\"}, " +
    "{\\"name\\": \\"name\\", \\"type\\": \\"string\\"}, {\\"name\\": \\"age\\", \\"type\\": \\"int\\"}]}";
    public static void main(String[] args) throws Exception {
    Properties props = new Properties();
    // Add the access address of the CKafka instance
    props.put("bootstrap.servers", "xx.xx.xx.xx:xxxx");
    props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
    // Use the Confluent `KafkaAvroSerializer`
    props.put("value.serializer", "io.confluent.kafka.serializers.KafkaAvroSerializer");
    // Add the schema service address to obtain the schema
    props.put("schema.registry.url", "http://127.0.0.1:8081");
    Producer<String, GenericRecord> producer = new KafkaProducer<>(props);
    Schema.Parser parser = new Schema.Parser();
    Schema schema = parser.parse(USER_SCHEMA);
    Random rand = new Random();
    int id = 0;
    while(id < 100) {
    id++;
    String name = "name" + id;
    int age = rand.nextInt(40) + 1;
    GenericRecord user = new GenericData.Record(schema);
    user.put("id", id);
    user.put("name", name);
    user.put("age", age);
    ProducerRecord<String, GenericRecord> record = new ProducerRecord<>("test", user);
    producer.send(record);
    Thread.sleep(1000);
    }
    producer.close();
    }
    }
    
    After running the script for a while, go to the CKafka console, select the Topic Management tab on the instance details page, select the topic, and click More > Message Query to view the message just sent.
    
    3. The Kafka consumer consumes messages.
    package schemaTest;
    import java.util.Collections;
    import java.util.Properties;
    import org.apache.avro.generic.GenericRecord;
    import org.apache.kafka.clients.consumer.ConsumerRecord;
    import org.apache.kafka.clients.consumer.ConsumerRecords;
    import org.apache.kafka.clients.consumer.KafkaConsumer;
    public class SchemaProduce {
    public static void main(String[] args) throws Exception {
    Properties props = new Properties();
    props.put("bootstrap.servers", "xx.xx.xx.xx:xxxx"); // Access address of the CKafka instance
    props.put("group.id", "schema");
    props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
    // Use the Confluent `KafkaAvroDeserializer`
    props.put("value.deserializer", "io.confluent.kafka.serializers.KafkaAvroDeserializer");
    // Add the schema service address to obtain the schema
    props.put("schema.registry.url", "http://127.0.0.1:8081");
    KafkaConsumer<String, GenericRecord> consumer = new KafkaConsumer<>(props);
    consumer.subscribe(Collections.singletonList("test"));
    try {
    while (true) {
    ConsumerRecords<String, GenericRecord> records = consumer.poll(10);
    for (ConsumerRecord<String, GenericRecord> record : records) {
    GenericRecord user = record.value();
    System.out.println("value = [user.id = " + user.get("id") + ", " + "user.name = "
    + user.get("name") + ", " + "user.age = " + user.get("age") + "], "
    + "partition = " + record.partition() + ", " + "offset = " + record.offset());
    }
    }
    } finally {
    consumer.close();
    }
    }
    }
    
    On the Consumer Group tab page in the CKafka console, select the consumer group named schema, enter the topic name, and click View Consumer Details to view the consumption details.
    
    Start the consumer for consumption. Below is a screenshot of the consumption log:
    
    문의하기

    고객의 업무에 전용 서비스를 제공해드립니다.

    기술 지원

    더 많은 도움이 필요하시면, 티켓을 통해 연락 바랍니다. 티켓 서비스는 연중무휴 24시간 제공됩니다.

    연중무휴 24시간 전화 지원