Use Case
Tom has collected logs to in nested JSON format to CLS. Now he wants to extract the user (secondary nested field) and App fields from the logs.
Raw Log
[
{
"content": {
"App": "App-1",
"start_time": "2021-10-14T02:15:08.221",
"resonsebody": {
"method": "GET",
"user": "Tom"
},
"response_code_details": "3000",
"bytes_sent": 69
}
},
{
"content": {
"App": "App-2",
"start_time": "2222-10-14T02:15:08.221",
"resonsebody": {
"method": "POST",
"user": "Jerry"
},
"response_code_details": "2222",
"bytes_sent": 1
}
}
]
DSL Processing Function
Option 1. Use the JMES formula to extract fields directly without expanding all key-value pairs
ext_json_jmes("content", jmes="resonsebody.user", output="user")
ext_json_jmes("content", jmes="App", output="App")
Option 2. Expand all key-value pairs and discard unwanted fields
ext_json("content")
fields_drop("content")
fields_drop("bytes_sent","method","response_code_details","start_time")
DSL Processing Function Details
Option 1:
1. Use the JMES formula resonsebody.user to directly specify the secondary nested field user.
ext_json_jmes("content", jmes="resonsebody.user", output="user")
2. Use the JMES formula App to directly specify the App field.
ext_json_jmes("content", jmes="App", output="App")
Option 2:
1. Use the ext_json function to extract structured data from the JSON data. All fields are expanded by default.
2. Discard the content field.
3. Discard the unwanted fields bytes_sent, method, response_code_details, and start_time.
fields_drop("bytes_sent","method","response_code_details","start_time")
Processing Result
[{"App":"App-1","user":"Tom"},
{"App":"App-2","user":"Jerry"}]
Was this page helpful?