Workload Triggers
Kubernetes-based Event-Driven Autoscaler (KEDA) supports Kubernetes Workload triggers, enabling scaling based on the number of Pods in one or more workloads. This is very useful in multi-level service call scenarios. For details, please refer to KEDA Scalers: Kubernetes Workload. Use Cases
Multi-level Service Simultaneous Scaling
The picture shows multi-level microservice call:
The services A, B, and C usually have a fixed proportional quantity.
If the pressure on A suddenly increases, forcing a scale-out, B and C can also scale out almost simultaneously with A by using KEDA's Kubernetes Workload triggers, without waiting for pressure to propagate slowly.
First, configure the scale-out for A, which can be based on CPU and memory pressure. For example:
apiVersion: keda.sh/v1alpha1
kind: ScaledObject
metadata:
name: a
spec:
scaleTargetRef:
apiVersion: apps/v1
kind: Deployment
name: a
pollingInterval: 15
minReplicaCount: 10
maxReplicaCount: 1000
triggers:
- type: memory
metricType: Utilization
metadata:
value: "60"
- type: cpu
metricType: Utilization
metadata:
value: "60"
Then, configure the scale-out for B and C, assuming a fixed ratio of A:B:C = 3:3:2. For example:
apiVersion: keda.sh/v1alpha1
kind: ScaledObject
metadata:
name: b
spec:
scaleTargetRef:
apiVersion: apps/v1
kind: Deployment
name: b
pollingInterval: 15
minReplicaCount: 10
maxReplicaCount: 1000
triggers:
- type: kubernetes-workload
metadata:
podSelector: 'app=a'
value: '1'
apiVersion: keda.sh/v1alpha1
kind: ScaledObject
metadata:
name: c
spec:
scaleTargetRef:
apiVersion: apps/v1
kind: Deployment
name: c
pollingInterval: 15
minReplicaCount: 3
maxReplicaCount: 340
triggers:
- type: kubernetes-workload
metadata:
podSelector: 'app=a'
value: '3'
With the above configuration, when the pressure on A increases, A, B, and C will scale out almost simultaneously without waiting for the pressure to propagate step by step. This allows for faster adaptation to pressure changes, improving system elasticity and performance.