Magic Command | Description | Use Case |
%run | Run the specified Python script or notebook file |
|
%pip | Install the specified Python package |
|
Magic Command | Description | Use Case |
%%python | Execute the current cell in Python syntax (usually unnecessary, as Python is the default) |
|
%%markdown | Render Markdown text in the cell |
|
%load_ext dlcmagic.kyuubikernel.magics.dlcenginemagics%load_ext dlcmagic.pythonkernel.magics
Magic Command | Description | Use Case |
%%py | Execute the current cell in PySpark grammar. You need to execute the following initialization commands before using it. |
|
%%scala | Execute the current cell in Scala grammar. |
|
%%sql | Execute the current cell in Spark SQL grammar. |
|
Function Name | Description | Use Case |
summarize(df: Object): void | Calculate and display statistical metrics for DataFrame to understand the data structure. Applicable to Python code, PySpark code. |
|
Function Name | Description | Use Case |
exit(value: String): void | Exit the current notebook and print the specified return value, which can be used to pass the parameters of the notebook to downstream tasks. |
|
run(path: String, timeoutSeconds: int, arguments: Map): String | Run the notebook file path: Specify the notebook file path timeoutSeconds: Timeout Time arguments: Variables |
|
Function Name | Description | Use Case |
text(name: String, defaultValue: String, label: String): void | Set variable value |
|
get(name: String): String | Get the specified variable |
|
remove(name: String): void | Clear specified variable |
|
removeAll(): void | Clear variables set in the current context |
|
MLFlow Function | Function Name | Function Feature and Usage |
Experiment Management | mlflow.create_experiment(name) | Create a new experiment. Ensure the uniqueness of the experiment name; if the experiment name already exists, create_experiment will raise an exception. |
| mlflow.set_experiment(name) | Set the current experiment. It can be used directly for an existing experiment name to record parameters and indicators in subsequent runs. If the specified experiment does not exist, a new experiment will be created automatically. |
| mlflow.start_run() | Start a new run. Return a Run object representing the context of the current run. start_run() is usually used with the with statement to ensure that end_run() is called automatically after the run ends. |
Record parameters and indicators. | mlflow.log_param(key, value) | Record a parameter and its value. key (str): Name of the parameter. value (str, int, float): The value of the parameter. It can be a string, integer, or floating-point number. |
| mlflow.log_metric(key, value, step=None) | Record an indicator and its value. |
| mlflow.log_artifact(local_path, artifact_path=None) | Record local files or directories, such as the model's configuration file, data file, result file, etc. local_path: The path of the local file or directory to be recorded; artifact_path: The path on the MLflow server where the file or directory is stored. |
Model Management | mlflow.sklearn.log_model(model, artifact_path) | Record Scikit-learn models. |
| mlflow.pyfunc.log_model(artifact_path, python_model) | Record a custom Python model. |
| mlflow.register_model(model_uri, name) | Register the model to the model registry. The model registry is the model management and version control feature provided by MLflow, which facilitates the sharing, deployment and management of models. |
Model deployment | mlflow.pyfunc.serve(model_uri) | Deploy the model as a REST API service. It is used to start an HTTP server locally to provide prediction services for registered MLflow models. After the server is started, prediction can be made by sending data through HTTP Post requests. model_uri: URI pointing to the registered model, which can be the URI in the model registry or the path of the recorded model. |
# print project parametersprint(dlcutils.params.get("test_parameter"))# output 100
# get task_test_param value# When testing and running in the notebook space,# default values need to be set because the notebook file has not yet been associated with a task.try:task_test_param_value = dlcutils.params.get("task_test_param")if not task_test_param_value: # If the obtained value is an empty stringtask_test_param_value = 'task_default_value'except Exception: # If the parameter cannot be obtained at alltask_test_param_value = 'task_default_value'print(f"Using toy value: {task_test_param_value}")
# get workflow_test_param value# When testing and running in the notebook space,# default values need to be set because the notebook file has not yet been associated with a workflow.try:workflow_test_param_value = dlcutils.params.get("workflow_test_param")if not workflow_test_param_value: # If the obtained value is an empty stringworkflow_test_param_value = 'workflow_default_value'except Exception: # If no parameter is obtained at allworkflow_test_param_value = 'workflow_default_value'print(f"Using toy value: {workflow_test_param_value}")
# Exit the notebook and output parametersdlcutils.notebook.exit('this is output parameter values')
# get task_input_param value# When testing and running in the notebook space,# default values need to be set because the notebook file has not yet been associated with a task.try:task_input_param = dlcutils.params.get("task_input_param")if not task_input_param: # If the obtained value is an empty stringtask_input_param = 'task_input_default_value'except Exception: # If the parameter cannot be obtained at alltask_input_param = 'task_input_default_value'print(f"Using toy value: {task_input_param}")